Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Nucleic Acids Res ; 50(14): 8377-8391, 2022 08 12.
Article in English | MEDLINE | ID: covidwho-1937680

ABSTRACT

The RNA programmed non-specific (trans) nuclease activity of CRISPR-Cas Type V and VI systems has opened a new era in the field of nucleic acid-based detection. Here, we report on the enhancement of trans-cleavage activity of Cas12a enzymes using hairpin DNA sequences as FRET-based reporters. We discover faster rate of trans-cleavage activity of Cas12a due to its improved affinity (Km) for hairpin DNA structures, and provide mechanistic insights of our findings through Molecular Dynamics simulations. Using hairpin DNA probes we significantly enhance FRET-based signal transduction compared to the widely used linear single stranded DNA reporters. Our signal transduction enables faster detection of clinically relevant double stranded DNA targets with improved sensitivity and specificity either in the presence or in the absence of an upstream pre-amplification step.


Subject(s)
CRISPR-Associated Proteins , Bacterial Proteins/metabolism , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems , DNA/genetics , DNA Cleavage , DNA, Single-Stranded/genetics
2.
Biosensors (Basel) ; 11(9)2021 Aug 28.
Article in English | MEDLINE | ID: covidwho-1374295

ABSTRACT

The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease-19 (COVID-19), has severely influenced public health and economics. For the detection of SARS-CoV-2, clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein (Cas)-based assays have been emerged because of their simplicity, sensitivity, specificity, and wide applicability. Herein, we have developed a CRISPR-Cas12-based assay for the detection of SARS-CoV-2. In the assay, the target amplicons are produced by isothermal reverse transcription recombinase polymerase amplification (RT-RPA) and recognized by a CRISPR-Cas12a/guide RNA (gRNA) complex that is coupled with the collateral cleavage activity of fluorophore-tagged probes, allowing either a fluorescent measurement or naked-eye detection on a lateral flow paper strip. This assay enables the sensitive detection of SARS-CoV-2 at a low concentration of 10 copies per sample. Moreover, the reliability of the method is verified by using nasal swabs and sputum of COVID-19 patients. We also proved that the current assay can be applied to other viruses, such as Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus (SARS-CoV), with no major changes to the basic scheme of testing. It is anticipated that the CRISPR-Cas12-based assay has the potential to serve as a point-of-care testing (POCT) tool for a wide range of infectious viruses.


Subject(s)
Bacterial Proteins/metabolism , CRISPR-Associated Proteins/metabolism , Endodeoxyribonucleases/metabolism , Middle East Respiratory Syndrome Coronavirus/isolation & purification , SARS-CoV-2/isolation & purification , Severe acute respiratory syndrome-related coronavirus/isolation & purification , Virus Diseases/diagnosis , CRISPR-Cas Systems , Fluorescent Dyes/chemistry , Humans , Middle East Respiratory Syndrome Coronavirus/genetics , Nose/virology , Point-of-Care Testing , RNA, Guide, Kinetoplastida/chemistry , RNA, Guide, Kinetoplastida/genetics , Reverse Transcriptase Polymerase Chain Reaction , Severe acute respiratory syndrome-related coronavirus/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity , Sputum/virology
3.
Nat Commun ; 12(1): 5033, 2021 08 19.
Article in English | MEDLINE | ID: covidwho-1366816

ABSTRACT

Characteristic properties of type III CRISPR-Cas systems include recognition of target RNA and the subsequent induction of a multifaceted immune response. This involves sequence-specific cleavage of the target RNA and production of cyclic oligoadenylate (cOA) molecules. Here we report that an exposed seed region at the 3' end of the crRNA is essential for target RNA binding and cleavage, whereas cOA production requires base pairing at the 5' end of the crRNA. Moreover, we uncover that the variation in the size and composition of type III complexes within a single host results in variable seed regions. This may prevent escape by invading genetic elements, while controlling cOA production tightly to prevent unnecessary damage to the host. Lastly, we use these findings to develop a new diagnostic tool, SCOPE, for the specific detection of SARS-CoV-2 from human nasal swab samples, revealing sensitivities in the atto-molar range.


Subject(s)
Adenine Nucleotides/chemistry , COVID-19/diagnosis , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems , Oligoribonucleotides/chemistry , RNA, Bacterial/genetics , Ribonucleases/metabolism , SARS-CoV-2/genetics , COVID-19/genetics , COVID-19/metabolism , COVID-19/virology , Diagnostic Tests, Routine/methods , Humans , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity
4.
Nature ; 582(7811): 277-282, 2020 06.
Article in English | MEDLINE | ID: covidwho-980299

ABSTRACT

The great majority of globally circulating pathogens go undetected, undermining patient care and hindering outbreak preparedness and response. To enable routine surveillance and comprehensive diagnostic applications, there is a need for detection technologies that can scale to test many samples1-3 while simultaneously testing for many pathogens4-6. Here, we develop Combinatorial Arrayed Reactions for Multiplexed Evaluation of Nucleic acids (CARMEN), a platform for scalable, multiplexed pathogen detection. In the CARMEN platform, nanolitre droplets containing CRISPR-based nucleic acid detection reagents7 self-organize in a microwell array8 to pair with droplets of amplified samples, testing each sample against each CRISPR RNA (crRNA) in replicate. The combination of CARMEN and Cas13 detection (CARMEN-Cas13) enables robust testing of more than 4,500 crRNA-target pairs on a single array. Using CARMEN-Cas13, we developed a multiplexed assay that simultaneously differentiates all 169 human-associated viruses with at least 10 published genome sequences and rapidly incorporated an additional crRNA to detect the causative agent of the 2020 COVID-19 pandemic. CARMEN-Cas13 further enables comprehensive subtyping of influenza A strains and multiplexed identification of dozens of HIV drug-resistance mutations. The intrinsic multiplexing and throughput capabilities of CARMEN make it practical to scale, as miniaturization decreases reagent cost per test by more than 300-fold. Scalable, highly multiplexed CRISPR-based nucleic acid detection shifts diagnostic and surveillance efforts from targeted testing of high-priority samples to comprehensive testing of large sample sets, greatly benefiting patients and public health9-11.


Subject(s)
CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems/genetics , Microfluidic Analytical Techniques/methods , Virus Diseases/diagnosis , Virus Diseases/virology , Animals , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , Drug Resistance, Viral/genetics , Genome, Viral/genetics , HIV/classification , HIV/genetics , HIV/isolation & purification , Humans , Influenza A virus/classification , Influenza A virus/genetics , Influenza A virus/isolation & purification , Microfluidic Analytical Techniques/instrumentation , RNA, Guide, Kinetoplastida/genetics , SARS-CoV-2 , Sensitivity and Specificity
5.
Nat Commun ; 11(1): 5921, 2020 11 20.
Article in English | MEDLINE | ID: covidwho-939436

ABSTRACT

The COVID-19 pandemic has highlighted that new diagnostic technologies are essential for controlling disease transmission. Here, we develop SHINE (Streamlined Highlighting of Infections to Navigate Epidemics), a sensitive and specific diagnostic tool that can detect SARS-CoV-2 RNA from unextracted samples. We identify the optimal conditions to allow RPA-based amplification and Cas13-based detection to occur in a single step, simplifying assay preparation and reducing run-time. We improve HUDSON to rapidly inactivate viruses in nasopharyngeal swabs and saliva in 10 min. SHINE's results can be visualized with an in-tube fluorescent readout - reducing contamination risk as amplification reaction tubes remain sealed - and interpreted by a companion smartphone application. We validate SHINE on 50 nasopharyngeal patient samples, demonstrating 90% sensitivity and 100% specificity compared to RT-qPCR with a sample-to-answer time of 50 min. SHINE has the potential to be used outside of hospitals and clinical laboratories, greatly enhancing diagnostic capabilities.


Subject(s)
Betacoronavirus/isolation & purification , CRISPR-Associated Proteins/metabolism , Molecular Diagnostic Techniques/methods , Biological Assay , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Fluorescence , Humans , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , SARS-CoV-2
6.
EBioMedicine ; 61: 103036, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-844322

ABSTRACT

BACKGROUND: Real-time reverse transcription-PCR (rRT-PCR) has been the most effective and widely implemented diagnostic technology since the beginning of the COVID-19 pandemic. However, fuzzy rRT-PCR readouts with high Ct values are frequently encountered, resulting in uncertainty in diagnosis. METHODS: A Specific Enhancer for PCR-amplified Nucleic Acid (SENA) was developed based on the Cas12a trans-cleavage activity, which is specifically triggered by the rRT-PCR amplicons of the SARS-CoV-2 Orf1ab (O) and N fragments. SENA was first characterized to determine its sensitivity and specificity, using a systematic titration experiment with pure SARS-CoV-2 RNA standards, and was then verified in several hospitals, employing a couple of commercial rRT-PCR kits and testing various clinical specimens under different scenarios. FINDINGS: The ratio (10 min/5 min) of fluorescence change (FC) with mixed SENA reaction (mix-FCratio) was defined for quantitative analysis of target O and N genes, and the Limit of Detection (LoD) of mix-FCratio with 95% confidence interval was 1.2≤1.6≤2.1. Totally, 295 clinical specimens were analyzed, among which 21 uncertain rRT-PCR cases as well as 4 false negative and 2 false positive samples were characterized by SENA and further verified by next-generation sequencing (NGS). The cut-off values for mix-FCratio were determined as 1.145 for positive and 1.068 for negative. INTERPRETATION: SENA increases both the sensitivity and the specificity of rRT-PCR, solving the uncertainty problem in COVID-19 diagnosis and thus providing a simple and low-cost companion diagnosis for combating the pandemic. FUNDING: Detailed funding information is available at the end of the manuscript.


Subject(s)
Bacterial Proteins/metabolism , Betacoronavirus/genetics , CRISPR-Associated Proteins/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Endodeoxyribonucleases/metabolism , RNA, Viral/metabolism , Real-Time Polymerase Chain Reaction/methods , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/pathology , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins , Humans , Limit of Detection , Nasal Cavity/virology , Nucleic Acid Amplification Techniques/methods , Nucleic Acid Amplification Techniques/standards , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , Pandemics , Phosphoproteins , Pneumonia, Viral/diagnosis , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Polyproteins , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/standards , Reference Standards , SARS-CoV-2 , Viral Proteins/genetics , Viral Proteins/metabolism
7.
Nat Commun ; 11(1): 4906, 2020 09 30.
Article in English | MEDLINE | ID: covidwho-807811

ABSTRACT

The CRISPR-Cas12a RNA-guided complexes have tremendous potential for nucleic acid detection but are limited to the picomolar detection limit without an amplification step. Here, we develop a platform with engineered crRNAs and optimized conditions that enabled us to detect various clinically relevant nucleic acid targets with higher sensitivity, achieving a limit of detection in the femtomolar range without any target pre-amplification step. By extending the 3'- or 5'-ends of the crRNA with different lengths of ssDNA, ssRNA, and phosphorothioate ssDNA, we discover a self-catalytic behavior and an augmented rate of LbCas12a-mediated collateral cleavage activity as high as 3.5-fold compared to the wild-type crRNA and with significant improvement in specificity for target recognition. Particularly, the 7-mer DNA extension to crRNA is determined to be universal and spacer-independent for enhancing the sensitivity and specificity of LbCas12a-mediated nucleic acid detection. We perform a detailed characterization of our engineered ENHANCE system with various crRNA modifications, target types, reporters, and divalent cations. With isothermal amplification of SARS-CoV-2 RNA using RT-LAMP, the modified crRNAs are incorporated in a paper-based lateral flow assay that can detect the target with up to 23-fold higher sensitivity within 40-60 min.


Subject(s)
Bacterial Proteins/metabolism , Betacoronavirus/genetics , CRISPR-Associated Proteins/metabolism , Endodeoxyribonucleases/metabolism , Nucleic Acid Amplification Techniques/methods , RNA, Viral/isolation & purification , Trans-Activators/metabolism , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , CRISPR-Cas Systems , Clinical Laboratory Techniques , Clustered Regularly Interspaced Short Palindromic Repeats , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , DNA, Single-Stranded , Pandemics , Pneumonia, Viral , RNA, Guide, Kinetoplastida/genetics , RNA, Viral/genetics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL